April 17, 2014

Comparing different version of the trailer #xmen

3:52pm  |   URL: http://tmblr.co/ZZkAZx1DIpC6F
Filed under: xmen 
April 17, 2014

mothernaturenetwork:

The science behind your cat’s most adorable features
There’s much to admire about your kitty’s cute little paws, nose and whiskers — but there’s some amazing biology at work as well.

(via i-possess-your-heart)

April 17, 2014

directorscuts:

The Green Inferno Official Trailer #1

(Source: ifyoulikemovies)

April 16, 2014
Seeing this In about 5 hours. #TheamazingSpiderman2

Seeing this In about 5 hours. #TheamazingSpiderman2

April 16, 2014
sagansense:

Stephen Hawking Puts Forth New Theory On Black Holes
Notion of an ‘event horizon’, from which nothing can escape, is incompatible with quantum theory, physicist claims.
Most physicists foolhardy enough to write a paper claiming that “there are no black holes” — at least not in the sense we usually imagine — would probably be dismissed as cranks. But when the call to redefine these cosmic crunchers comes from Stephen Hawking, it’s worth taking notice. In a paper posted online, the physicist, based at the University of Cambridge, UK, and one of the creators of modern black-hole theory, does away with the notion of an event horizon, the invisible boundary thought to shroud every black hole, beyond which nothing, not even light, can escape.
In its stead, Hawking’s radical proposal is a much more benign “apparent horizon”, which only temporarily holds matter and energy prisoner before eventually releasing them, albeit in a more garbled form.
“There is no escape from a black hole in classical theory,” Hawking told Nature. Quantum theory, however, “enables energy and information to escape from a black hole”. A full explanation of the process, the physicist admits, would require a theory that successfully merges gravity with the other fundamental forces of nature. But that is a goal that has eluded physicists for nearly a century. “The correct treatment,” Hawking says, “remains a mystery.”
Artistic impression of a black hole via NASA GSFC
Hawking posted his paper on the arXiv preprint server on 22 January 1. He titled it, whimsically, ‘Information preservation and weather forecasting for black holes’, and it has yet to pass peer review. The paper was based on a talk he gave via Skype at a meeting at the Kavli Institute for Theoretical Physics in Santa Barbara, California, in August 2013.
Fire fighting Hawking’s new work is an attempt to solve what is known as the black-hole firewall paradox, which has been vexing physicists for almost two years, after it was discovered by theoretical physicist Joseph Polchinski of the Kavli Institute and his colleagues.
Artist credit: Andy Potts [source]
In a thought experiment, the researchers asked what would happen to an astronaut unlucky enough to fall into a black hole. Event horizons are mathematically simple consequences of Einstein’s general theory of relativity that were first pointed out by the German astronomer Karl Schwarzschild in a letter he wrote to Einstein in late 1915, less than a month after the publication of the theory. In that picture, physicists had long assumed, the astronaut would happily pass through the event horizon, unaware of his or her impending doom, before gradually being pulled inwards — stretched out along the way, like spaghetti — and eventually crushed at the ‘singularity’, the black hole’s hypothetical infinitely dense core.
But on analysing the situation in detail, Polchinski’s team came to the startling realization that the laws of quantum mechanics, which govern particles on small scales, change the situation completely. Quantum theory, they said, dictates that the event horizon must actually be transformed into a highly energetic region, or ‘firewall’, that would burn the astronaut to a crisp.

This was alarming because, although the firewall obeyed quantum rules, it flouted Einstein’s general theory of relativity. According to that theory, someone in free fall should perceive the laws of physics as being identical everywhere in the Universe — whether they are falling into a black hole or floating in empty intergalactic space. As far as Einstein is concerned, the event horizon should be an unremarkable place.
Beyond the horizon Now Hawking proposes a third, tantalizingly simple, option. Quantum mechanics and general relativity remain intact, but black holes simply do not have an event horizon to catch fire. The key to his claim is that quantum effects around the black hole cause space-time to fluctuate too wildly for a sharp boundary surface to exist.
In place of the event horizon, Hawking invokes an “apparent horizon”, a surface along which light rays attempting to rush away from the black hole’s core will be suspended. In general relativity, for an unchanging black hole, these two horizons are identical, because light trying to escape from inside a black hole can reach only as far as the event horizon and will be held there, as though stuck on a treadmill. However, the two horizons can, in principle, be distinguished. If more matter gets swallowed by the black hole, its event horizon will swell and grow larger than the apparent horizon.
Theoretical calculations predict that the Milky Way’s central black hole, called Sagittarius A*, will look like this when imaged by the Event Horizon Telescope. The false-color image shows light radiated by gas swirling around and into a black hole. The dark region in the middle is the “black hole shadow,” caused by the black hole bending light around it. [source]
Conversely, in the 1970s, Hawking also showed that black holes can slowly shrink, spewing out ‘Hawking radiation’. In that case, the event horizon would, in theory, become smaller than the apparent horizon. Hawking’s new suggestion is that the apparent horizon is the real boundary. “The absence of event horizons means that there are no black holes — in the sense of regimes from which light can’t escape to infinity,” Hawking writes.
“The picture Hawking gives sounds reasonable,” says Don Page, a physicist and expert on black holes at the University of Alberta in Edmonton, Canada, who collaborated with Hawking in the 1970s. “You could say that it is radical to propose there’s no event horizon. But these are highly quantum conditions, and there’s ambiguity about what space-time even is, let alone whether there is a definite region that can be marked as an event horizon.”
Although Page accepts Hawking’s proposal that a black hole could exist without an event horizon, he questions whether that alone is enough to get past the firewall paradox. The presence of even an ephemeral apparent horizon, he cautions, could well cause the same problems as does an event horizon.
Unlike the event horizon, the apparent horizon can eventually dissolve. Page notes that Hawking is opening the door to a scenario so extreme “that anything in principle can get out of a black hole”. Although Hawking does not specify in his paper exactly how an apparent horizon would disappear, Page speculates that when it has shrunk to a certain size, at which the effects of both quantum mechanics and gravity combine, it is plausible that it could vanish. At that point, whatever was once trapped within the black hole would be released (although not in good shape).
What are black holes? [Wiki]
If Hawking is correct, there could even be no singularity at the core of the black hole. Instead, matter would be only temporarily held behind the apparent horizon, which would gradually move inward owing to the pull of the black hole, but would never quite crunch down to the centre. Information about this matter would not destroyed, but would be highly scrambled so that, as it is released through Hawking radiation, it would be in a vastly different form, making it almost impossible to work out what the swallowed objects once were.
“It would be worse than trying to reconstruct a book that you burned from its ashes,” says Page. In his paper, Hawking compares it to trying to forecast the weather ahead of time: in theory it is possible, but in practice it is too difficult to do with much accuracy.
Polchinski, however, is sceptical that black holes without an event horizon could exist in nature. The kind of violent fluctuations needed to erase it are too rare in the Universe, he says. “In Einstein’s gravity, the black-hole horizon is not so different from any other part of space,” says Polchinski. “We never see space-time fluctuate in our own neighbourhood: it is just too rare on large scales.”
Raphael Bousso, a theoretical physicist at the University of California, Berkeley, and a former student of Hawking’s, says that this latest contribution highlights how “abhorrent” physicists find the potential existence of firewalls. However, he is also cautious about Hawking’s solution. “The idea that there are no points from which you cannot escape a black hole is in some ways an even more radical and problematic suggestion than the existence of firewalls,” he says. "But the fact that we’re still discussing such questions 40 years after Hawking’s first papers on black holes and information is testament to their enormous significance."
Source: Nature
Stay curious! Watch PBS NOVA’s ‘Monsters of the Milky Way’ [51:23] || Stephen Hawking’s Universe: ‘Black Holes and Beyond’ [53:31] || ‘Monsters of the Cosmos' by melodysheep/Symphony of Science [3:25] || Carl Sagan explores a black hole on ‘Cosmos: A Personal Voyage’ [2:22]

sagansense:

Stephen Hawking Puts Forth New Theory On Black Holes

Notion of an ‘event horizon’, from which nothing can escape, is incompatible with quantum theory, physicist claims.

Most physicists foolhardy enough to write a paper claiming that “there are no black holes” — at least not in the sense we usually imagine — would probably be dismissed as cranks. But when the call to redefine these cosmic crunchers comes from Stephen Hawking, it’s worth taking notice. In a paper posted online, the physicist, based at the University of Cambridge, UK, and one of the creators of modern black-hole theory, does away with the notion of an event horizon, the invisible boundary thought to shroud every black hole, beyond which nothing, not even light, can escape.

In its stead, Hawking’s radical proposal is a much more benign “apparent horizon”, which only temporarily holds matter and energy prisoner before eventually releasing them, albeit in a more garbled form.

“There is no escape from a black hole in classical theory,” Hawking told Nature. Quantum theory, however, “enables energy and information to escape from a black hole”. A full explanation of the process, the physicist admits, would require a theory that successfully merges gravity with the other fundamental forces of nature. But that is a goal that has eluded physicists for nearly a century. “The correct treatment,” Hawking says, “remains a mystery.”

imageArtistic impression of a black hole via NASA GSFC

Hawking posted his paper on the arXiv preprint server on 22 January 1. He titled it, whimsically, Information preservation and weather forecasting for black holes, and it has yet to pass peer review. The paper was based on a talk he gave via Skype at a meeting at the Kavli Institute for Theoretical Physics in Santa Barbara, California, in August 2013.

Fire fighting
Hawking’s new work is an attempt to solve what is known as the black-hole firewall paradox, which has been vexing physicists for almost two years, after it was discovered by theoretical physicist Joseph Polchinski of the Kavli Institute and his colleagues.

imageArtist credit: Andy Potts [source]

In a thought experiment, the researchers asked what would happen to an astronaut unlucky enough to fall into a black hole. Event horizons are mathematically simple consequences of Einstein’s general theory of relativity that were first pointed out by the German astronomer Karl Schwarzschild in a letter he wrote to Einstein in late 1915, less than a month after the publication of the theory. In that picture, physicists had long assumed, the astronaut would happily pass through the event horizon, unaware of his or her impending doom, before gradually being pulled inwards — stretched out along the way, like spaghetti — and eventually crushed at the singularity, the black hole’s hypothetical infinitely dense core.

But on analysing the situation in detail, Polchinski’s team came to the startling realization that the laws of quantum mechanics, which govern particles on small scales, change the situation completely. Quantum theory, they said, dictates that the event horizon must actually be transformed into a highly energetic region, or ‘firewall’, that would burn the astronaut to a crisp.

image

This was alarming because, although the firewall obeyed quantum rules, it flouted Einstein’s general theory of relativity. According to that theory, someone in free fall should perceive the laws of physics as being identical everywhere in the Universe — whether they are falling into a black hole or floating in empty intergalactic space. As far as Einstein is concerned, the event horizon should be an unremarkable place.

Beyond the horizon
Now Hawking proposes a third, tantalizingly simple, option. Quantum mechanics and general relativity remain intact, but black holes simply do not have an event horizon to catch fire. The key to his claim is that quantum effects around the black hole cause space-time to fluctuate too wildly for a sharp boundary surface to exist.

In place of the event horizon, Hawking invokes an “apparent horizon”, a surface along which light rays attempting to rush away from the black hole’s core will be suspended. In general relativity, for an unchanging black hole, these two horizons are identical, because light trying to escape from inside a black hole can reach only as far as the event horizon and will be held there, as though stuck on a treadmill. However, the two horizons can, in principle, be distinguished. If more matter gets swallowed by the black hole, its event horizon will swell and grow larger than the apparent horizon.

imageTheoretical calculations predict that the Milky Way’s central black hole, called Sagittarius A*, will look like this when imaged by the Event Horizon Telescope. The false-color image shows light radiated by gas swirling around and into a black hole. The dark region in the middle is the “black hole shadow,” caused by the black hole bending light around it. [source]

Conversely, in the 1970s, Hawking also showed that black holes can slowly shrink, spewing out Hawking radiation. In that case, the event horizon would, in theory, become smaller than the apparent horizon. Hawking’s new suggestion is that the apparent horizon is the real boundary. “The absence of event horizons means that there are no black holes — in the sense of regimes from which light can’t escape to infinity,” Hawking writes.

“The picture Hawking gives sounds reasonable,” says Don Page, a physicist and expert on black holes at the University of Alberta in Edmonton, Canada, who collaborated with Hawking in the 1970s. “You could say that it is radical to propose there’s no event horizon. But these are highly quantum conditions, and there’s ambiguity about what space-time even is, let alone whether there is a definite region that can be marked as an event horizon.”

Although Page accepts Hawking’s proposal that a black hole could exist without an event horizon, he questions whether that alone is enough to get past the firewall paradox. The presence of even an ephemeral apparent horizon, he cautions, could well cause the same problems as does an event horizon.

Unlike the event horizon, the apparent horizon can eventually dissolve. Page notes that Hawking is opening the door to a scenario so extreme “that anything in principle can get out of a black hole”. Although Hawking does not specify in his paper exactly how an apparent horizon would disappear, Page speculates that when it has shrunk to a certain size, at which the effects of both quantum mechanics and gravity combine, it is plausible that it could vanish. At that point, whatever was once trapped within the black hole would be released (although not in good shape).

imageWhat are black holes? [Wiki]

If Hawking is correct, there could even be no singularity at the core of the black hole. Instead, matter would be only temporarily held behind the apparent horizon, which would gradually move inward owing to the pull of the black hole, but would never quite crunch down to the centre. Information about this matter would not destroyed, but would be highly scrambled so that, as it is released through Hawking radiation, it would be in a vastly different form, making it almost impossible to work out what the swallowed objects once were.

“It would be worse than trying to reconstruct a book that you burned from its ashes,” says Page. In his paper, Hawking compares it to trying to forecast the weather ahead of time: in theory it is possible, but in practice it is too difficult to do with much accuracy.

Polchinski, however, is sceptical that black holes without an event horizon could exist in nature. The kind of violent fluctuations needed to erase it are too rare in the Universe, he says. “In Einstein’s gravity, the black-hole horizon is not so different from any other part of space,” says Polchinski. “We never see space-time fluctuate in our own neighbourhood: it is just too rare on large scales.”

Raphael Bousso, a theoretical physicist at the University of California, Berkeley, and a former student of Hawking’s, says that this latest contribution highlights how “abhorrent” physicists find the potential existence of firewalls. However, he is also cautious about Hawking’s solution. “The idea that there are no points from which you cannot escape a black hole is in some ways an even more radical and problematic suggestion than the existence of firewalls,” he says. "But the fact that we’re still discussing such questions 40 years after Hawking’s first papers on black holes and information is testament to their enormous significance."

Source: Nature

Stay curious! Watch PBS NOVA’s ‘Monsters of the Milky Way [51:23] || Stephen Hawking’s Universe: ‘Black Holes and Beyond [53:31] || Monsters of the Cosmos' by melodysheep/Symphony of Science [3:25] || Carl Sagan explores a black hole on ‘Cosmos: A Personal Voyage’ [2:22]

(via startalkradio)

April 16, 2014

April 15, 2014

(Source: fyzombieland, via 59waystodie)

April 15, 2014
MAKE ME ADMIT STUFF
1. How many bruises on you right now?
2. You talked to an ex today, correct?
3. Have you stayed in a hospital?
4. Is trust a big issue for you?
5. Did you hang out with the person you like recently?
6. What are you excited for?
7. What happened tonight?
8. Do you think it’s disgusting when girls get really wasted?
9. Is confidence cute?
10. What is the last beverage you had?
11. How many people of the opposite sex do you fully trust?
12. Do you own a pair of skinny jeans?
13. What are you gonna do Saturday night?
14. What are you going to spend money on next?
15. Are you going out with the last person you kissed?
16. Do you think you’ll change in the next 3 months?
17. Who do you feel most comfortable talking to about anything?
18. The last time you felt broken?
19. Have you had a soft drink today?
20. Are you starting to realize anything?
21. Are you in a good mood?
22. Would you ever want to swim with sharks?
23. Are your eyes the same color as your dad’s?
24. What do you want right this second?
25. What would you say if the person you love/like kissed another girl/boy?
26. Is your current hair color your natural hair color?
27. Would you be able to date someone who doesn’t make you laugh?
28. What was the last thing that made you laugh?
29. Do you really, truly miss someone right now?
30. Does everyone deserve a second chance?
31. Honestly, do you hate the last boy you were talking to?
32. Does the person you have feelings for right now, know you do?
33. Are you one of those people who never drinks water?
34. Listening to?
35. Do you ever write in pencil anymore?
36. Do you know where the last person you kissed is?
37. Do you believe in love at first sight?
38. Who did you last call?
39. Who was the last person you danced with?
40. Why did you kiss the last person you kissed?
41. When was the last time you ate a cupcake?
42. Did you hug/kiss one of your parents today?
43. Ever embarrass yourself in front of a crush?
44. Do you tan?
45. If you could, would you take back your last kiss?
46. Did you talk to someone until you fell asleep last night?
47. Who was the last person to call you?
48. Do you sing in the shower?
49. Do you dance in the car?
50. Ever used a bow and arrow?
51. Last time you got a portrait taken by a photographer?
52. Do you think musicals are cheesy?
53. Is Christmas stressful?
54. Ever eat a pierogi?
55. Favorite type of fruit pie?
56. Occupations you wanted to be when you were a kid?
57. Do you believe in ghosts?
58. Ever have a Deja-vu feeling?
59. Take a vitamin daily?
60. Wear slippers?
61. Wear a bath robe?
62. What do you wear to bed?
63. First concert?
64. Wal-Mart, Target or Kmart?
65. Nike or Adidas?
66. Cheetos Or Fritos?
67. Peanuts or Sunflower seeds?
68. Favorite Taylor Swift song?
69. Ever take dance lessons?
70. Is there a profession you picture your future spouse doing?
71. Can you curl your tongue?
72. Ever won a spelling bee?
73. Have you ever cried because you were so happy?
74. What is your favorite book?
75. Do you study better with or without music?
76. Regularly burn incense?
77. Ever been in love?
78. Who would you like to see in concert?
79. What was the last concert you saw?
80. Hot tea or cold tea?
81. Tea or coffee?
82. Favorite type of cookie?
83. Can you swim well?
84. Can you hold your breath without holding your nose?
85. Are you patient?
86. DJ or band, at a wedding?
87. Ever won a contest?
88. Ever have plastic surgery?
89. Which are better black or green olives?
90. Opinions on marriage?
91. Best room for a fireplace?
92. Do you want to get married?
April 14, 2014
Help make it illegal to hold orcas in captivity

takeactionnow:

imageSeaWorld just got busted by a US government agency for violating the Animal Welfare Act — and we may have a rare chance to end its animal cruelty for good.

Help make it illegal to hold orcas in captivity for performance or entertainment purposes!

Sign - the petition - to the State of California!

(via considerxdone)

April 14, 2014
#EverythingIsAwesome

#EverythingIsAwesome

April 14, 2014
So i couldnt find my cat…..

So i couldnt find my cat…..

April 10, 2014
I will answer them if I get any.
A: Age.
B: Where I'm from.
C: Where I would like to live.
D: Favourite food.
E: Religion.
F: Sexual orientation.
G: Single/taken.
H: Favourite book.
I: Eye colour.
J: Favourite movie.
K: Favourite TV show.
L: Favourite band/singer.
M: Random fact about me.
N: Favorite day of the year.
O: Favourite colour.
P: If I have any pets; if so, their names.
Q: What I'm listening to right now.
R: Last movie I've watched.
S: What's my ringtone.
T: Favourite male character from a TV show.
U: Favourite female character from a TV show.
V: What my name means.
W: Favourite superhero.
X: Celebrity crush.
Y: My birthday.
Z: Ever self-harmed?
April 10, 2014

April 10, 2014

i-l-lusive:

the beauty of night

(via startalkradio)

April 9, 2014

Fuck everyone who dares to insult my beloved #ygritte

Liked posts on Tumblr: More liked posts »